Skip to main content
Log in

Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices

  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Here, we describe assay systems that utilize serum-free defined media to evaluate capillary morphogenesis during human endothelial cell (EC) invasion of three-dimensional collagen matrices. ECs invade these matrices over a 1–3-d period to form capillary tubes. Blocking antibodies to the α2β1 integrin interfere with invasion and morphogenesis while other integrin blocking antibodies do not. Interestingly, we observed increased invasion of ECs toward a population of underlying ECs undergoing morphogenesis. In addition, we have developed assays on microscope slides that display the invasion process horizontally, thereby enhancing our ability to image these events. Thus far, we have observed intracellular vacuoles that appear to regulate the formation of capillary lumens, and extensive cell processes that facilitate the interconnection of ECs during morphogenic events. These assays should enable further investigation of the morphologic steps and molecular events controlling human capillary tube formation in three-dimensional extracellular matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiyama, S. K.; Yamada, S. S.; Chen, W. T.; Yamada, K. M. Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly and cytoskeletal organization. J. Cell Biol. 109:863–875; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Bayless, K. J.; Salazar, R.; Davis, G. E. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the αvβ3 and α5β1 integrins. Am. J. Pathol., 156:1673–1683; 2000.

    PubMed  CAS  Google Scholar 

  • Bornstein, M. B. Reconstituted rat-tail collagen used as a substrate for tissue cultures on coverslips in Maximov slides and roller tubes. Lab. Invest. 7:134–137; 1958.

    PubMed  CAS  Google Scholar 

  • Cheresh, D. A.; Spiro, R. C. Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma attachment to vitronectin, fibrinogen and von Willebrand factor. J. Biol. Chem. 262:17,703–17,711; 1987.

    CAS  Google Scholar 

  • Davis, G. E.; Camarillo, C. W. Regulation of endothelial cell morphogenesis by integrins, mechanical forces and matrix guidance pathways. Exp. Cell Res. 216:113–123; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Davis, G. E.; Camarillo, C. W. An α2β1 integrin-dependent pinocytic mechanism involving intracellular vacuole formation and coalescence regulates capillary lumen and tube formation in three-dimensional collagen matrix. Exp. Cell Res. 224:39–51; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Drake, C. J.; Hungerford, J. E.; Little, C. D. Morphogenesis of the first blood vessels. Ann. N. Y. Acad. Sci. 857:155–179; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J.; Haudenschild, C. Angiogenesis in vitro. Nature 288:551–556; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Ilan, N.; Mahooti, S.; Madri, J. A. Distinct signal transduction pathways are utilized during the tube formation and survival phases of in vitro angiogenesis. J. Cell Sci. 111:3621–3631; 1998.

    PubMed  CAS  Google Scholar 

  • Maciag, T.; Cerundolo, J.; Lisley, S.; Kelley, P. R.; Forand, R. An endothelial cell growth factor from bovine hypothalamus: identification and partial characterization. Proc. Natl. Acad. Sci. USA 76:5674–5678; 1979.

    Article  PubMed  CAS  Google Scholar 

  • Maciag, T.; Kadish, J.; Wilkins, L.; Stemerman, M. B.; Weinstein, R. Organizational behavior of human umbilical vein endothelial cells. J. Cell Biol. 94:511–520; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Madri, J. A.; Pratt, B. M. Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem. 34:85–91; 1986.

    PubMed  CAS  Google Scholar 

  • Marx, M.; Perlmutter, R. A.; Madri, J. A. Modulation of platelet-derived growth factor receptor expression in microvascular endothelial cells during in vitro angiogenesis. J. Clin. Investig. 93:131–139; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Orci, L. Tumor-promoting phorbol esters induce angiogenesis in vitro. Cell 42:469–477; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Pepper, M. S.; Vassalli, J. D.; Orci, L. Phorbol ester induces cultured endothelial cells to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cell. Physiol. 132:509–516; 1987.

    Article  PubMed  CAS  Google Scholar 

  • Montesano, R.; Pepper, M. S.; Vassalli, J. D.; Orci, L. Modulation of angiogenesis in vitro. EXS 61:129–136; 1992.

    PubMed  CAS  Google Scholar 

  • Nicosia, R. F.; Madri, J. A. The microvascular extracellular matrix. Developmental changes during angiogenesis in the aortic ring-plasma clot model. Am. J. Pathol. 128:78–90; 1987.

    PubMed  CAS  Google Scholar 

  • Nicosia, R. F.; Ottinetti, A. Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro. Lab. Invest. 63:115–122; 1990.

    PubMed  CAS  Google Scholar 

  • Nicosia, R. F.; Tchao, R.; Leighton, J. Histotypic angiogenesis in vitro: light microscopic, ultrastructural, and radioautographic studies. In Vitro 18:538–549; 1982.

    PubMed  CAS  Google Scholar 

  • Salazar, R.; Bell, S. E.; Davis, G. E. Coordinate induction of the actin cytoskeletal regulatory proteins gelsolin, vasodilator-stimulated phosphoprotein, and profilin during capillary morphogenesis in vitro. Exp. Cell Res. 249:22–32; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Senger, D. R.; Claffey, K. P.; Benes, J. E.; Perruzzi, C. A.; Sergiou, A. P.; Detmar, M. Angiogenesis promoted by vascular endothelial growth factor: regulation through alphalbetal and alpha2beta1 integrins. Proc. Natl. Acad. Sci. USA 94:13,612–13,617; 1997.

    Article  CAS  Google Scholar 

  • Speidel, C. C. Studies of living nerves: II. Activities of ameboid growth cones, sheath cells, and myelin segments, as revealed by prolonged observation of individual nerve fibers in frog tadpoles. Am. J. Anat. 52:1–79; 1933.

    Article  Google Scholar 

  • Vernon, R. B.; Lara, S. L.; Drake, C. J.; Iruela-Arispe, M. L.; Angello, J. C.; Little, C. D.; Wight, T. N.; Sage, E. H. Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models for vascular development. In Vitro Cell. Dev. Biol. 31A:120–131; 1995.

    Google Scholar 

  • Vernon, R. B.; Sage, E. H. Between molecules and morphology: extracellular matrix and creation of vascular form. Am. J. Pathol. 147:873–883; 1995.

    PubMed  CAS  Google Scholar 

  • Vermon, R. B.; Sage, E. H. A novel, quantitative model for study of endothelial cell migration and sprout formation within three-dimensional collagen matrices. Microvasc. Res. 57:118–133; 1999.

    Article  Google Scholar 

  • Wayner, E. A.; Orlando, R. A.; Cheresh, D. A. Integrins αvβ3 and αvβ5 contribute to cell attachment to vitronectin but differentially distribute on the cell surface. J. Cell Biol. 113:919–929; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Xin, X.; Yang, S.; Kowalski, J.; Gerritsen, M. E. Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J. Biol. Chem. 274:9116–9121; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K. M.; Kennedy, D. W.; Yamada, S. S.; Gralnick, H.; Chen, W.-T.; Akiyama, S. K. Monoclonal antibody and synthetic peptide inhibitors of human tumor cell migration. Cancer Res. 50:4485–4496; 1990.

    PubMed  CAS  Google Scholar 

  • Yang, S.; Graham, J.; Kahn, J. W.; Schwartz, E. A.; Gerritsen, M. E. Functional roles for PECAM-1 (CD31) and VE-cadherin (CD144) in tube assembly and lumen formation in three-dimensional collagen gels. Am. J. Pathol. 155:887–895; 1999.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Davis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, G.E., Black, S.M. & Bayless, K.J. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell.Dev.Biol.-Animal 36, 513–519 (2000). https://doi.org/10.1290/1071-2690(2000)036<0513:CMDHEC>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0513:CMDHEC>2.0.CO;2

Key words

Navigation